Filter Results  

Search Results

The present invention provides an apparatus and method for obtaining data to determine one or more characteristics of a wind flow field using one or more radars. Data is collected from the one or more radars, and analyzed to determine the one or more characteristics of the wind flow field. The one or more radars are positioned to have a portion of the wind flow field within a scanning sector of the one or more radars.
<p>The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairs of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50 % reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. However, a vast majority of intervals have no observations in the tower wake, so removing the full 2 or 20 min intervals does not diminish the XPIA dataset.</p>
This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.
The central aims of the DOE-supported “Cyber Wind Facility” project center on the recognition that wind turbines over land and ocean generate power from atmospheric winds that are inherently turbulent and strongly varying, both spatially over the rotor disk and in temporally as the rotating blades pass through atmospheric eddies embedded within the mean wind. The daytime unstable atmospheric boundary layer (ABL) is particularly variable in space time as solar heating generates buoyancy-driven motions that interact with strong mean shear in the ABL “surface layer,” the lowest 200 - 300 m where wind turbines reside in farms. With the “Cyber Wind Facility” (CWF) program we initiate a research and technology direction in which “cyber data” are generated from “computational experiments” within a “facility” akin to a wind tunnel, but with true space-time atmospheric turbulence that drive utility-scale wind turbines at full-scale Reynolds numbers. With DOE support we generated the key “modules” within a computational framework to create a first generation Cyber Wind Facility (CWF) for single wind turbines in the daytime ABL---both over land where the ABL globally unstable and over water with closer-to-neutral atmospheric conditions but with time response strongly affected by wave-induced forcing of the wind turbine platform (here a buoy configuration). The CWF program has significantly improved the accuracy of actuator line models, evaluated with the Cyber Wind Facility in full blade-boundary-layer-resolved mode. The application of the CWF made in this program showed the existence of important ramp-like response events that likely contribute to bearing fatigue failure on the main shaft and that the advanced ALM method developed here captures the primary nonsteady response characteristics. Long-time analysis uncovered distinctive key dynamics that explain primary mechanisms that underlie potentially deleterious load transients. We also showed that blade bend-twist coupling plays a central role in the elastic responses of the blades to atmospheric turbulence, impacting turbine power.
The U.S. Department of Energy’s (DOE’s) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers,businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects.
Buoy lidar data for Wind energy research
Data collected to explore wind energy applications
The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale and medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.

Pages